体側に黒点を有する日本産スズキの形態的および遺伝的特徴

横川浩治（香川県水産試験場）

Morphological and Genetic Features of Japanese Sea Bass *Lateolabrax japonicus* with Black Dots on Lateral Body Region

Koji YOKOGAWA

Kagawa Prefectural Fisheries Experimental Station

Abstract

Dotted type of Japanese sea bass *Lateolabrax japonicus*, which is visually similar to Chinese sea bass *Lateolabrax* sp. were examined. It was morphologically and genetically compared with *L. japonicus* and *L. sp.* studied in the former report. Morphologically, the dotted type significantly differed from the non-dotted type in some of the characteristics. Average values of proportion and meristic counts of the dotted type tended to be close to those of *L. sp.* Genetically, allelic composition of the dotted type was closer to *L. sp.* than *L. japonicus*.

The results suggest that the dots appear in the individuals which have peculiar genes to *L. sp.* in the *L. japonicus* population, and they are morphologically close to *L. sp.* The genetic influence of *L. sp.* could be caused by the survival of the peculiar genes to *L. sp.* during specific divergence process, or genetic introgression of *L. sp.* to the *L. japonicus* population after the specific divergence.

Yokogawa and Seki 1) (以下前報という)は、最近養殖用種苗としてさかんに移入されている中国産スズキの形態的および遺伝的特徴について調べ、中国産スズキは日本産スズキ *Lateolabrax japonicus* とは別種であることを明らかにした。

この中国産スズキ *Lateolabrax* sp. は体側に明瞭な小黑点を多数有することで特徴づけられるが、ところで *L. japonicus* の未成魚においても *L. sp.* に類似した小黒点を備える個体（Fig. 1）が存在することがよく知られている2)−4)。そこで本研究では、この *L. japonicus* の黒点型個体についてその形態的および遺伝的特徴について調べ、前報で報告した *L. japonicus* および *L. sp.* の比較検討を行なった。

材料と方法

標本魚の入手と取り扱いに関するデータをTable 1に示す。材料に用いたスズキは、兵庫県の瀬戸内海側にある高砂および室津の地先で1993年7月～9月にかけて刺網および定置網によって漁獲された計117個体である。標本魚は体側の黒点の有無によって無黒点型と黒点型の2型に類別した。平均全長は黒点型で229.4mm, 無黒点型で253.2mmで、すべての個体が1992年に生まれた1歳魚5)と考えられた。得られた標本は、前報の方法により外部形態の測定を行なうとともに、アイソザイム分析
Fig. 1. General aspect of dotted type of Japanese sea bass.

Table 1. Collecting and treating data of examined specimens

<table>
<thead>
<tr>
<th>Type</th>
<th>Dotted</th>
<th>Non-dotted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locality</td>
<td>Takasago, Muromoto (Hyōgo)</td>
<td>Takasago, Muromoto (Hyōgo)</td>
</tr>
<tr>
<td>Method of sampling</td>
<td>Gill net, Fixed shore net</td>
<td>Gill net, Fixed shore net</td>
</tr>
<tr>
<td>Number of individuals</td>
<td>26</td>
<td>86</td>
</tr>
<tr>
<td>Range of size (TL, mm)</td>
<td>181.1—278.3</td>
<td>237.2—276.6</td>
</tr>
<tr>
<td>Average size (TL, mm)</td>
<td>229.4</td>
<td>253.2</td>
</tr>
<tr>
<td>Preservation</td>
<td>Frozen in -30°C before electrophoresis, thereafter fixed by 10% formalin</td>
<td>Frozen in -30°C before electrophoresis, thereafter fixed by 10% formalin</td>
</tr>
</tbody>
</table>

を行なった。

結果
標本魚は、まず電気泳動実験によりアイソザイムを検出し、種の判別をするために L. japonicus と L. sp. で対立遺伝子が完全置換している PROT-I* 遺伝子座 1) について調べた。その結果、1 個体を除いてすべて*100 遺伝子のホモ型であり、L. japonicus 集団の遺伝子頻度にはほとんど一致した。

ただ、黒点型の個体番号 K-18 の 1 個体だけはこの遺伝子座において L. japonicus の*100 遺伝子と L. sp. の*170 遺伝子のヘテロ型であった。この個体の由来について、小割生産者から散逸した L. sp.6) と在来の L. japonicus との雑種 7) である可能性を考えられたので、それについて検討した。
Table 2. Probability that K-18 is F₁ between L. japonicus and L. sp.

<table>
<thead>
<tr>
<th>Locus</th>
<th>Frequency</th>
<th>Genotype Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAT-1</td>
<td>*100A 0.792 0.981 AA 0.777</td>
<td>L. japonicus L. sp. of K-18 for F₁</td>
</tr>
<tr>
<td>AAT-2</td>
<td>*50B 0.208 0.019</td>
<td></td>
</tr>
<tr>
<td>ADH</td>
<td>*-100A 0.660 1.000 AA 0.660</td>
<td></td>
</tr>
<tr>
<td>-150B</td>
<td>0.330 0.000</td>
<td></td>
</tr>
<tr>
<td>GAPDH-1</td>
<td>*100A 1.000 1.000 AA 1.000</td>
<td></td>
</tr>
<tr>
<td>GAPDH-2</td>
<td>*100A 0.986 1.000 AA 0.986</td>
<td></td>
</tr>
<tr>
<td>50B</td>
<td>0.014 0.000</td>
<td></td>
</tr>
<tr>
<td>GPI-1</td>
<td>*150C 0.000 0.060 AB 0.832</td>
<td></td>
</tr>
<tr>
<td>110B</td>
<td>0.100 0.922</td>
<td></td>
</tr>
<tr>
<td>*-100A 0.900 0.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPI-2</td>
<td>*-100A 0.938 0.940 AA 0.881</td>
<td></td>
</tr>
<tr>
<td>-250B</td>
<td>0.063 0.060</td>
<td></td>
</tr>
<tr>
<td>IDDH</td>
<td>*165C 0.037 0.200 AA 0.770</td>
<td></td>
</tr>
<tr>
<td>*100A 0.963 0.800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDHP-1</td>
<td>*100A 0.912 0.588 AA 0.536</td>
<td></td>
</tr>
<tr>
<td>70B</td>
<td>0.088 0.412</td>
<td></td>
</tr>
<tr>
<td>LDH</td>
<td>*100A 0.997 0.966 BB 0.031</td>
<td></td>
</tr>
<tr>
<td>-100B</td>
<td>0.903 0.034</td>
<td></td>
</tr>
</tbody>
</table>

Table 2に、多型的遺伝子座におけるL. japonicusとL. sp.の遺伝子頻度1およびK-18の遺伝子型、さらにL. japonicusとL. sp.がF₁をつくった場合、双方の遺伝子頻度から計算されるK-18の遺伝子型となる確率を遺伝子座ごとに示した。

*PROT-1*遺伝子座では、前述のようにL. japonicusとL. sp.で対立遺伝子が完全置換しているため交雑個体がヘテロ型になる確率は100%となり、また他の多くの遺伝子座においてもK-18がF₁であると仮定した場合、かなり妥当な確率が得られた。ただ、*LDH*遺伝子座においては、K-18はL. japonicusのメイン遺伝子である*−100（B）遺伝子のホモ型であることから、F₁における確率は3.1%という低い値となった（Table 2）。

K-18の形態については、L. japonicusとL. sp.で大きな差が報告されている側縁有孔鱗数と皺耙数1はそれぞれ80と27であり、いずれもL. japonicusの範囲によく一致した。

無黒点型と黒点型の計量形質のプロポーション
Table 3. Length-measured characters of dotted and non-dotted sea bass with \(t \) values between both types, and those of \(L. \) japonicus and \(L. \) sp. to be referred.

<table>
<thead>
<tr>
<th>Type or Species</th>
<th>Average value</th>
<th>(t)</th>
<th>Average value</th>
<th>Correspondance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-dotted</td>
<td>Dotted</td>
<td>(L.) japonicus</td>
<td>(L.) sp.</td>
</tr>
<tr>
<td>Total length(^*)</td>
<td>122.08 > 121.52</td>
<td>0.904</td>
<td>121.69 > 119.17</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Fork length(^*)</td>
<td>115.98 > 115.75</td>
<td>0.633</td>
<td>115.11 > 114.00</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Pre-anus length(^*)</td>
<td>66.42 > 65.65</td>
<td>1.333</td>
<td>66.04 < 66.76</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Body depth(^*)</td>
<td>25.44 < 25.61</td>
<td>0.500</td>
<td>24.24 < 26.28</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Body width(^*)</td>
<td>14.41 > 13.77</td>
<td>1.599</td>
<td>13.38 < 13.46</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Caudal peduncle depth(^*)</td>
<td>10.02 > 9.79</td>
<td>2.031</td>
<td>9.27* < 10.35</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Caudal peduncle length(^*)</td>
<td>21.64 < 21.87</td>
<td>0.779</td>
<td>21.61 < 22.09</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Pre-dorsal length(^*)</td>
<td>35.38 < 35.57</td>
<td>0.434</td>
<td>35.24 > 35.00</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>First dorsal fin length(^*)</td>
<td>14.74 > 13.98</td>
<td>2.181*</td>
<td>14.10 > 12.62</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Second dorsal fin length(^*)</td>
<td>11.41 < 12.64</td>
<td>3.383**</td>
<td>11.82 > 12.57</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Anal fin length(^*)</td>
<td>13.21 > 13.02</td>
<td>0.692</td>
<td>12.49 < 14.33</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Pectoral fin length(^*)</td>
<td>18.06 > 17.12</td>
<td>3.144**</td>
<td>17.05 > 16.08</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Pelvic fin length(^*)</td>
<td>19.08 > 18.25</td>
<td>3.459**</td>
<td>17.57 > 18.33</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Head length(^*)</td>
<td>32.56 > 31.90</td>
<td>1.767</td>
<td>31.98 < 32.56</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Snout length(^*)</td>
<td>25.27 < 25.94</td>
<td>1.786</td>
<td>26.25 > 25.10</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Orbital diameter(^*)</td>
<td>18.50 < 20.15</td>
<td>4.023***</td>
<td>17.70 < 24.83</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Inter orbital width(^*)</td>
<td>20.15 < 20.32</td>
<td>0.426</td>
<td>21.20 < 21.64</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Sub-orbital width(^*)</td>
<td>8.53 < 8.81</td>
<td>0.634</td>
<td>11.26 < 10.72</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Upper jaw length(^*)</td>
<td>42.97 < 43.05</td>
<td>0.200</td>
<td>42.36 < 44.21</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Lower jaw length(^*)</td>
<td>46.53 < 46.92</td>
<td>0.897</td>
<td>46.43 < 46.82</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Pectoral scaly area length(^*)</td>
<td>26.05 > 25.33</td>
<td>0.738</td>
<td>26.73 > 19.43</td>
<td>(\bigcirc)</td>
</tr>
</tbody>
</table>

\(^* \) Percentage of standard length
\(^{**} \) Percentage of head length
\(^{***} \) Percentage of pectoral fin length

\(^{\text{Significant at 5% level}} \)
\(^{\text{Significant at 1% level}} \)
\(^{\text{Significant at 0.1%level}} \)

Table 4. Meristic characters of dotted and non-dotted sea bass with \(t \) values between both types, and those of \(L. \) japonicus and \(L. \) sp. to be referred.

<table>
<thead>
<tr>
<th>Type or Species</th>
<th>Average value</th>
<th>(t)</th>
<th>Average value</th>
<th>Correspondance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-dotted</td>
<td>Dotted</td>
<td>(L.) japonicus</td>
<td>(L.) sp.</td>
</tr>
<tr>
<td>Dorsal fin spines</td>
<td>12.91 > 12.88</td>
<td>0.171</td>
<td>12.85 < 12.95</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Dorsal fin soft rays</td>
<td>12.64 < 13.38</td>
<td>3.210**</td>
<td>12.78 < 13.06</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Anal fin spines</td>
<td>3.00 = 3.00</td>
<td>0.000</td>
<td>3.00 > 2.98</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Anal fin soft rays</td>
<td>7.27 < 7.65</td>
<td>1.805</td>
<td>7.73 > 7.53</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Pectoral fin soft rays</td>
<td>17.18 > 16.92</td>
<td>1.159</td>
<td>16.85 > 16.31</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Pelvic fin spines</td>
<td>1.00 = 1.00</td>
<td>0.000</td>
<td>1.00 = 1.00</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Pelvic fin soft rays</td>
<td>5.00 = 5.00</td>
<td>0.000</td>
<td>5.00 = 5.00</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Pored scales on lateral line</td>
<td>84.64 > 81.58</td>
<td>2.845**</td>
<td>83.08 > 72.85</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Scales above lateral line</td>
<td>16.09 > 15.31</td>
<td>0.454</td>
<td>14.50 > 15.34</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Scales below lateral line</td>
<td>19.09 > 18.50</td>
<td>0.335</td>
<td>17.98 > 17.92</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Gill rakers (upper limb)</td>
<td>8.46 > 7.96</td>
<td>1.541</td>
<td>9.66 > 6.38</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Gill rakers (lower limb)</td>
<td>18.27 > 17.85</td>
<td>1.881</td>
<td>17.52 > 14.70</td>
<td>(\bigcirc)</td>
</tr>
<tr>
<td>Gill rakers (total)</td>
<td>26.73 > 25.81</td>
<td>2.065*</td>
<td>27.18 > 21.07</td>
<td>(\bigcirc)</td>
</tr>
</tbody>
</table>

\(^{\text{Significant at 5% level}} \)
\(^{\text{Significant at 1% level}} \)
nicus と L. sp. の平均値を合わせて Table 4
に示した。さらに計量形質の場合と同様に、無黒点型と黒点型、L. japonicus と L. sp. のそれぞれの間で平均値を比較して大小関係を不等号または等号で示し、双方の不等号あるいは等号が一致する形質については表の右端に〇印を付した。

無黒点型と黒点型との平均値の t 検定の結果では、背鰭軟条数、側線有孔鱗数、鳔部数において有意差が認められ、計数形質においても無黒点型と黒点型は形態的に相違することが明らかとなった（Table 4）。無黒点型と黒点型の大小関係と L. japonicus と L. sp. の大小関係は大部分の計数形質において一致し、特に有意差の認められた形質では両者の大小関係は一致した（Table 4）。

次に、遺伝的特徴について、無黒点型と黒点型の遺伝子頻度および両型の遺伝子頻度の異質混合性を \(\chi^2 \) 検定によって調べたもの、または比較のため、に L. japonicus と L. sp. の遺伝子頻度の調査を行なった結果では、LDH*1 遺伝子座の遺伝子頻度に高い水準で有意差が認められたほか、GPI-1*1遺伝子座の遺伝子頻度においても \(\chi^2 \) 値が有意水準に近い値となった（Table 5）。この二つの遺伝子座は L. japonicus と L. sp. で対立遺伝子が完全置換に近い状態であることが前報で報告されている。

ここで、この二つの遺伝子座の遺伝子組成について、無黒点型、黒点型および L. sp. のものを円グラフで示した（Fig 2）。それによれば、無黒点型と黒点型の遺伝子組成はかなり相違し、黒点型の遺伝子組成はむしろ L. sp. のそれに近いことが示された。

無黒点型と黒点型の遺伝子頻度からそれぞれ

<table>
<thead>
<tr>
<th>Locus</th>
<th>Allele</th>
<th>Non-dotted</th>
<th>Dotted</th>
<th>(\chi^2) hetero</th>
<th>L. japonicus</th>
<th>L. sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAT-1</td>
<td>*120</td>
<td>0.024</td>
<td>0.000</td>
<td>1.156</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>*100</td>
<td>0.833</td>
<td>0.875</td>
<td>0.315</td>
<td>0.792</td>
<td>0.981</td>
</tr>
<tr>
<td></td>
<td>*85</td>
<td>0.143</td>
<td>0.125</td>
<td>0.062</td>
<td>0.208</td>
<td>0.019</td>
</tr>
<tr>
<td>AAT-2</td>
<td>*100</td>
<td>1.000</td>
<td>0.981</td>
<td>2.668</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>*50</td>
<td>0.000</td>
<td>0.019</td>
<td>2.668</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>ADH</td>
<td>*-50</td>
<td>0.006</td>
<td>0.000</td>
<td>0.311</td>
<td>0.011</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>*-100</td>
<td>0.690</td>
<td>0.654</td>
<td>0.246</td>
<td>0.659</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>*-105</td>
<td>0.304</td>
<td>0.346</td>
<td>0.334</td>
<td>0.330</td>
<td>0.000</td>
</tr>
<tr>
<td>GAPDH</td>
<td>*100</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>*100</td>
<td>0.935</td>
<td>1.000</td>
<td>5.540</td>
<td>0.986</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>*50</td>
<td>0.065</td>
<td>0.000</td>
<td>3.540</td>
<td>0.014</td>
<td>0.000</td>
</tr>
<tr>
<td>GPI-I</td>
<td>*130</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.060</td>
</tr>
<tr>
<td></td>
<td>*110</td>
<td>0.088</td>
<td>0.173</td>
<td>2.402</td>
<td>0.100</td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>*100</td>
<td>0.912</td>
<td>0.827</td>
<td>2.402</td>
<td>0.900</td>
<td>0.018</td>
</tr>
<tr>
<td>GPI-2</td>
<td>*100</td>
<td>0.968</td>
<td>1.000</td>
<td>1.694</td>
<td>0.937</td>
<td>0.940</td>
</tr>
<tr>
<td></td>
<td>*150</td>
<td>0.032</td>
<td>0.000</td>
<td>1.694</td>
<td>0.063</td>
<td>0.060</td>
</tr>
<tr>
<td>IDDH</td>
<td>*165</td>
<td>0.120</td>
<td>0.120</td>
<td>0.000</td>
<td>0.037</td>
<td>0.200</td>
</tr>
<tr>
<td></td>
<td>*100</td>
<td>0.880</td>
<td>0.860</td>
<td>0.134</td>
<td>0.963</td>
<td>0.800</td>
</tr>
<tr>
<td>IDHP-1</td>
<td>*120</td>
<td>0.006</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>*100</td>
<td>0.965</td>
<td>1.000</td>
<td>1.703</td>
<td>0.912</td>
<td>0.588</td>
</tr>
<tr>
<td></td>
<td>*70</td>
<td>0.029</td>
<td>0.000</td>
<td>1.487</td>
<td>0.088</td>
<td>0.412</td>
</tr>
<tr>
<td>LDH</td>
<td>*100</td>
<td>0.060</td>
<td>0.192</td>
<td>8.288**</td>
<td>0.097</td>
<td>0.966</td>
</tr>
<tr>
<td></td>
<td>*-100</td>
<td>0.940</td>
<td>0.808</td>
<td>8.288**</td>
<td>0.903</td>
<td>0.034</td>
</tr>
</tbody>
</table>

** Significant at 1% level
Fig. 2. Graphic comparisons of allelic frequencies in GPI-1* and LDH* loci.

考 察

種の判別をするために PROT-1* 遺伝子座について調べたところ、黒点型の 1 個体が*100 遺伝子と*170 遺伝子のレトロ型であり、L. sp. と L. japonicus との雑種 F1 である可能性が考えられた。しかし、この個体は LDH* 遺伝子座において L. japonicus のメインの遺伝子である*−100 遺伝子のホモ型であることから、F1 である可能性は極めて低いものと推定された (Table 2)。

このことから、この個体の由来として、F1 以下、あるいは L. japonicus の集団の中にかなり低い頻度で L. sp. に特微的な*170 遺伝子が保有されているなどの可能性が考えられた。しかし、L. sp. の移入が開始されたのが1990年であり1, 8, L. sp. の成熟年齢が3歳以上であることから9, 10, この標本が得られた1993年の時点で散逸した L. sp. が2世代目以降まで残存している可能性はほとんど考えられず、この個体の由来は後者の可能性によることが強く示唆される。

形態的および遺伝的解析の結果、無黒点型と黒点型の関係と L. japonicus と L. sp. の関係は多くの形態においてよく一致し、黒点型は L. japonicus よりもむしろ L. sp. の方に形態的、遺伝的に近いことが明らかとなった。つまり、黒点型スズキは L. sp. に遺伝的に近いゆえに形態的にも近似し、L. sp. に特微的な黒点が発現するものと考えられる。

生物の形質は多くの遺伝子によって支配され、L. japonicus と L. sp. では両種に共通な遺伝子、およびそれぞれの種に特異的な遺伝子が多く存在するはずである。これら2種は従来まで同一種として扱われてきた11, 12 ほど類縁性が高いことから、
個体レベルでは他方の種に特異的遺伝子を持つものも少なくないものと推察される。

このことから、*L. japonicus* の集団の中で *L. sp.* に特異的な遺伝子量的に多く持つ個体に黒点が発現し、さらに形態的にも *L. sp.* に近くな るものと考えられる。つまり、黒点の発現はポリジーンの作用によるものと推察され、これは黒点の数や形状にかなりの変異があることからもその可能性が示唆される。

ここで、*L. japonicus* の集団の中にこのような黒点型個体が出現するに至ったプロセスについて、以下に挙げるいくつかの仮説を考えた。

仮説 1 ある時代に *L. sp.* が中国から日本へ人為的に移植され、その影響で *L. sp.* の遺伝子が *L. japonicus* の集団の中に保持されるようになった。

仮説 2 *L. japonicus* と *L. sp.* が分化してい く過程で、祖先種から受け継いだ *L. sp.* に特徴 性的な遺伝子が *L. japonicus* の集団の中で消滅せずに残存している。

仮説 3 *L. japonicus* と *L. sp.* が種分化し た後に、自然な状態で *L. sp.* の集団が *L. japonicus* の集団に遺伝的に加入し、そのために *L. sp.* の 遺伝子が *L. japonicus* の集団の中に保持されて いる。

まず仮説 1 については、前述のように *L. sp.* の移入が開始されたのが1990年であり18)，それ 以前にも移入がなかったという確証はないが、*L. japonicus* の集団に遺伝的な影響をおよぼすほど の移入があった可能性はまず考えられない。

次に仮説 2 に関して、根井18）は、ある遺伝子座において対立遺伝子が完全置換をするプロセスにつ いて確率論から説明し、世代を重ねることに徐々 に遺伝子頻度が変化して最終的にいずれかの対立 遺伝子に固定されるとしている。

この理論によれば、黒点を発現させる遺伝子と させない遺伝子が完全置換の方向に向かう途上で は、*L. japonicus* と *L. sp.* それぞれの集団の中 に他方の種の遺伝子が低頻度で含まれることに なる。そのため、*L. japonicus* の集団の中で *L. sp.* の黒点遺伝子を持つ個体に黒点が発現するも のと考えられ、また逆に *L. sp.* でもまれに黒点 を欠く個体が存在することから14）、*L. sp.* で *L. japonicus* の非黒点遺伝子を持つ個体には黒点が 発現しないものと推定される。

仮説 3 については二つの可能性が考えられる。 まず一つの可能性は、*L. japonicus* と *L. sp.* の 遺伝的距離から両種が種分化したのは今からおよ そ90万年前と計算されるが11・13），その後、大陸と 日本列島が地殻変動、気候変動等によってたびた び連続、あるいは接近するような現象が生じたと 言われている14・16）。そのようなとき、大陸と日本 列島の接点のなかで広い地域で、種分化して間も ない *L. japonicus* と *L. sp.* の交雑が生じた可 能性が考えられる。その後、そのような交雑集団 は *L. japonicus* あるいは *L. sp.* いずれかの大き な母集団に遺伝的に吸収されていったものと推定 される。

しかし、このときに加入したもう一方の種の遺 伝子はそれぞれの集団内から完全には排除されず、 低い頻度でそれぞれの集団内に保持されるようにな った可能性が考えられる。また、このときの交 雑集団がそのまま地理的に隔離されて現在に至っ ているものが *L. sp.* の遺伝的な影響を強く受け ている有明海の集団17）であるとみることもできる。

仮説 3 のもう一つの可能性は、現在においても わずかながら恒常的に遺伝的加入が起こっている というものである。*L. sp.* の場合、卵および仔 稲魚の浮遊期は *L. japonicus* と同様にかなり長 いと考えられるため18），大陸沿岸で発生した *L.
sp. の仔稚魚が海流に乗って日本列島沿岸に漂着して生育する可能性が考えられる。そして、成熟した L. sp. が L. japonicus の集団に遺伝的な影響をおよぼしている可能性も推定できる。

しかし、L. japonicus や L. sp. の分布の境界である朝鮮半島南部沿岸域において両種の遺伝的な交流がないことから＊1，両種は現在では生態的に生殖隔離しているものと考えられ，この可能性は棄却される。つまり仮説 3 としては、L. japonicus の集団が過去のある時代に受けた L. sp. の遺伝的な影響が現在まで残存しているために、黒点型スズキが出現することになる。

謝 辞
　本研究に用いた標本魚の入手にあたり，多大なるご助力を賜った兵庫県立水産試験場の島本信夫主任研究員に心からお礼を申し上げる。また，本研究を行なうのに際して，電気泳動実験施設の使用を快諾され，さらに研究を進める上で有益な数々のご助言を頂いた高知大学農学部教授谷口順彦博士に深謝の意を表する。

要 約
　体側に多数の小黒点を有することで特徴づけられる中国産スズキ Lateolabrax sp. に類似した日本産スズキ L. japonicus の黒点型個体の形態的および遺伝的特徴について調べた。

形態形質では，黒点型スズキはいくつかの形質において無黒点型と平均値が有意に異なり，むしろ L. sp. のそれと近い傾向を示した。また遺伝形質でも，黒点型はむしろ L. sp. の遺伝子組成に近い傾向を示した。

これらの結果から，L. japonicus の集団の中で L. sp. に特異的な遺伝子を量的に多く持つ個体に黒点が発現し，さらに形態的にも L. sp. に近くなるものと考えられた。この L. sp. の遺伝的な影響の要因について，種分化過程における L. sp. の遺伝子の残存，あるいは種分化後の L. sp. の L. japonicus 集団への遺伝的加入などの可能性が考えられた。

文 献
2）片山正夫（1965）スズキ Lateolabrax japonicus. 新日本動物図鑑 下巻（岡田要・内田清之助・内田亨 監修），北隆館，東京，278。
3）菅地保三郎・川部浩哉・水野信彦，（1976）原色日本淡水魚類図鑑，全改訂新版，保育社，大阪，462 pp., 56 pls.
4）河村究一（1989）スズキ Lateolabrax japonicus. 日本の淡水魚（川部浩哉・水野信彦 編・監修），山と渓谷社，東京，485。
5）落合明・田中克（1986）新版魚類学（下）恒星社厚生閣，東京，xvii＋1140 pp
6）横川浩十・末友浩一・関伸吾（1993）四国近海から得られた，いわゆる“ホシスズキ”の形態的および遺伝的特徴，平成5年度日本水産学会秋季大会講演要旨集，119。
8）松岡 学（1993）愛媛県における海産魚養殖の歴史と現状．水産増殖，41，265－271。